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Abstract

Non-small cell lung cancer (NSCLC) represents the largest proportion of
lung cancers in the United States. Image guided radiotherapy allows tumor
volume dynamics to be measured at certain intervals during treatment. This
has improved our ability to study the evolution of tumors such as NSCLC
during treatment using time series approach models. The main goal of our
research study is to identify the model that best describes the existing radio-
therapeutic treatment options: Stereotactic body radiation therapy (SBRT),
also known as stereotactic ablative radiotherapy (SABR), and standard ther-
apy (ST). Our mathematical structure builds on the linear quadratic model
from the radiation oncological �eld and therefore, introduces parameters re-
lated to tumor's radio-sensitivity. Previous such one and two population
ODE models of tumor volume dynamics, treating NSCLC, were designed us-
ing exponential and logistic growth functions. These studies indicate that
a two population exponential model provided the best balance between �t
and mathematical complexity and may serve a functional role in clinical prac-
tice. Our study reevaluates previous �ndings for treating NSCLC using both,
the standard and SABR regimens, and tests the suitability of the hyper-
Gompertz, hyper-logistic, Richards, Von-Bertalan�y, and a non-linear model
derived using �uid mechanics laws by assessing their goodness of �t versus
their mathematical complexity. These models are calibrated using data from
eleven patients treated using SABR regimen, and four patients treated using
standard therapy, extracted from a previous study. Models pertaining both
treatment regimens are evaluated using statistical approaches, such as the
Akaike Information Criterion. Model comparison indicates that the mod-
els �tting patient data perform di�erently based on the treatment regimen.
Our study suggests that for the SABR patients the non-linear model derived
from �uid mechanics laws overall outperforms the rest of the studied models,
and in the case of the standard treatment the logistic model seems to better
represent patient data. Our hope is that our �ndings will bene�t research
regarding NSCLC, as well as other cancer �eld types.
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1 Introduction

Lung cancer, including small and non-small cell, represents the leading
cause of cancer death in the U.S., with more people dying of this disease than
colon, breast and prostate cancers combined. Among these two di�erent types
of lung tumors, non-small cell lung cancer (NSCLC) represents about 85 -
90% of the total number of lung cancers.

There are three known types of NSCLC [17]:

1. Adenocarcinoma - a slow growing lung cancer most commonly found
on the outer layer of the lung. It is usually found in smokers, but it
also represents the most common form of lung cancer in non-smokers.

2. Squamous cell carcinoma - in general it develops in the center of
the lung. Mostly commonly found in smokers.

3. Large cell carcinoma - can occur anywhere in the lung and it usually
develops quickly.

It is estimated that in 2017 the number of new cases of lung cancer
will reach 222,500 with 155,870 deaths [8]. The non-small cell lung can-
cer (NSCLC) accounts for 80-85% of all lung cancers [23]. NSCLC includes
di�erent subtypes, which originate from di�erent types of lung cells. The
reason why these are grouped together as NSCLC is because of their similar
treatment type and prognosis. The most prevalent subtypes are as follow:
Adenocarcinoma, squamous cell carcinoma and large cell carcinoma, and rep-
resent 40%, 25-30%, and 10-15%, respectively of all lung cancers. The num-
ber of new cases of lung & bronchus in U.S. for 2017 is expected to reach
116,990 cases for men and 105,510 for women, and the number of deaths is
expected to reach 84,500 for men and 71,280 for women. The largest recorded
geographic disparity in the U.S. is for lung cancer and re�ects the national
distribution of poverty and access to care. In the U.S., the highest rate of
deaths by lung & bronchus cases is among the non-hispanic black population.
It is a well known fact that a major risk factor of lung cancer is the use of
tobacco, which in 2010 accounted for .7 million men and .2 million women
deaths from the low and middle income categories, versus .4 million men and
.2 million women deaths from the high income category [18]. Therefore, a
vast proportion of cancer deaths are caused by the use of tobacco, mainly
among men, speci�cally originating from the low and middle income category.
Data from the Illinois Department of Public Health reveals that low-income
Chicago communities, which are largely African-American or Latino, have
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cancer rates up to double the national average. In Illinois, the estimated
number of new cases of lung & bronchus cancer is 8,600 with 6,470 estimated
deaths in 2017 [4]. In Illinois, the number of male lung & bronchus cases ex-
ceed that of female cases (the incidence rates are 81 male versus 58.5 female
per 100,000 during 2009-2013) [4].

Despite the successes obtained by the latest advancement in detection
and treatment and the reduction in the use of tobacco, the �ght against
cancer requires advancements in basic research to improve both detection
and treatment.

The main goal of our research study is to identify the best model that
�ts the following two treatment options: Stereotactic body radiation ther-
apy (SBRT), also known as stereotactic ablative radiotherapy (SABR), and
standard therapy (ST) for NSCLC. Both regimen options use image-guided
radiation therapy as a tool for improving the precision and accuracy of treat-
ment delivery.

SABR represents a choice of treatment that gives a large dose of radia-
tion concentrated at the tumor, while the neighboring organs receive limited
amounts of that radiation. This treatment option represents a recent im-
plementation in the �eld of radiation oncology, promises high rates of local
control for NSCLC, and represents a good alternative for non-surgical tu-
mors. In our study, we use linear and non-linear simulations for empirical,
as well as theoretical models. The goal of our study is to estimate parameter
values, which lead to predictive conclusions regarding tumor dynamics un-
der therapy, and the validity of our models. Behavior of such quantities and
their evolution across models and patient data may help assist the radiation
oncologists in the development of dosing recommendations.

Fitting results from our numerical simulations suggest that not only that
models apply di�erently to patient data, but also, they di�er from one treat-
ment regimen to the other. For the SABR patients the non-linear model
derived from �uid mechanics laws overall outperforms the rest of the studied
models, and for the standard treatment the logistic model seems to better
represent patient data. Results also suggest that using a heterogeneous two
population model, the evolution under therapy of the two populations, live
and dead, can be described as "simple" and "crossed". These behaviors di�er
from model to model with an exponential incline more towards the "simple"
case. A discussion regarding parameter �ndings can be found inside the
Conclusions Sections.

Our mathematical model distinguishes from the majority of existing ap-
proaches in that it makes use of the linear quadratic model used in the radi-
ation oncological �eld and therefore, includes parameters related to tumor's
radio-sensitivity. Our hope is that using predictions related to these two
treatment regimens, oncologists can better choose between the most e�ective
and less toxic alternative for their lung cancer patients.

The outline of our paper is as follows. In Section 2, we introduce the
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methodology, the ODE models, results from numerical simulations, and sta-
tistical analysis. In Section 3, we draw conclusions related to each treatment
regimen. In Section 4, we discuss shortcomings related to using our models
and future work.

2 Methods

Our study investigates the tumor dynamics using patient data represent-
ing gross tumor volume (GTV), for NSCLC patients, treated using the SABR
and standard regimens. Our model assumes that tumor cell population is
heterogeneous, and therefore divided into live and dead cells. Patient data
originating from two datasets [21] were used for this study. Individual pa-
tient data was �tted to our model and parameter values were used to create
inferences about the appropriateness of the models used in this study.

The linear-quadratic equation will be used to model the e�ects of radio-
therapy. After each fractionated dose a proportion of the cells will die and
the remainder of the cells survive treatment.

The surviving fraction, S [Appendix C], can be written

S � expp�αd� βd2q, (1)

where S represents the surviving fraction, d is the dose per fraction, and
α and β are the linear and quadratic coe�cients, representing tumor radio-
sensitivity. To limit the in�nite combinations of α and β the ratio is �xed to
10 Gy�1, thereby requiring estimation of α only.

2.1 ODE model

Our study explicitly investigates the tumor dynamics using patient data
representing gross tumor volume (GTV), for NSCLC patients, treated using
the SABR and standard regimens. Our model assumes that tumor cell pop-
ulation is heterogeneous, and therefore divided into live and dead cells. Our
mathematical model includes a "point-to-point" approach used to �t GTV
data in order to �nd parameter values. Using the linear-quadratic described
by Eq. 1, the "point-to-point" method is described by the following scheme
[20] #

Vlpt� ∆tq � VlptqS,

Vdpt� ∆tq � Vdptq � Vlptqr1 � Ss,
(2)

with (∆t) representing an in�nitesimal amount of time after the fractionated
dose is delivered, and the scheme$'&

'%
dVl
dt � fpVlq,
dVd
dt � �cVd,

V � Vl � Vd,

(3)
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where fpVlq is the growth term, Vl is the volume of living tumor cells, Vd is
the volume of dead cells, and c is the clearance rate.

Figure 1 summarizes the method used to model GTV at the time each
fractionated dose is delivered.

Fractionated Dose

Initial GTV Surviving Fraction

Dead Cells

GTV

Dead Cells not
cleared from tumor

growth

clearance

Figure 1: Two population tumor growth model.

To accomplish this, several ODE models for tumor growth were consid-
ered. Tariq et. al. [20] studied a two population model with the growth terms
described by exponential and logistic functions. Exponential growth assumes
that all vital nutrients are available in abundance and places no constraints on
growth. This assumption is reasonable for small tumors like stage 1 NSCLC
with tumor diameter less than 5 cm [21]. We expand these approaches and
consider growths described by functions with empirical grounds as well as
non-linear functions derived from theoretical �uid mechanics laws.

The ODE growth models for the live cell population representing Eq.
(3a), can be described as follow:

• Exponential
dVl
dt

� kVl, (4)

• Hyper-logistic

dVl
dt

� kV ηl

�
1 �

Vl
M


ζ
, (5)

with η � 1 and ζ � 1. Parameter M represents the carrying capacity.

• Hyper-Gompertz
dVl
dt

� kVl

�
ln
M

Vl


γ
, (6)

with γ � 1.
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• Richards
dVl
dt

� kVl

�
1 �

�
Vl
M


γ

. (7)

• Von-Bertalan�y

dVl
dt

� kV
2
3

l

�
1 �

�
Vl
M


 1
3

�
. (8)

• A dimensional radial growth model based on Darcy's Law includes dif-
fusion length and vasculature parameters [10]. The radial growth model
can be written

dVl
dt

� 32{3p4πq1{3kLp1 �BqV
2{3
l � kBVl, (9)

where L � 0.007 is the di�usion length and B � 0.54 is the vasculature
[11].

Model Abbreviation Parameters Growth Term Equation #

Exponential EXP α, k, c 4
Logistic LOG α, k,M, c 5
Gompertz GOM α, k,M, c 6
Richards RIC α, k,M, c, γ 7
Von Bertalan�y VB α, k,M, c 8
Radial 3D α, k, c 9

Table 1: Summary of models.

2.2 Numerical implementation

Numerical implementation for the models described in this section include
a combination of random search procedures, using pseudo-random seeds, and
interior point methods. Linear and non-linear solvers were constructed to
allow for numerical results of the "point-to-point" scheme described by Eq.
(2). In some circumstances, when the number of data points were small and
analytical solutions were computationally permissive, models were plotted as
continuous piecewise functions. This allowed for further statistical analysis to
be conducted including con�dence bands. In other cases, solution recursion
and numerical solving methods were too computationally expensive to per-
mit plotting continuous solutions and the "point-to-point" scheme was used
to study model behavior. The varying methods of plotting did not impact
parameter �tting or model comparison statistics.
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2.3 Uncertainty analysis and parameter estimation

Models are calibrated to each patient by estimating the model parameters
listed in table 1 using the maximum likelihood estimation (MLE), where the
sum-of-squares error (SSE) [2]

SSE �
Ţ

t�1

pV pt,pq � vtq
2
, (10)

where V is the measured GTV right before the tth fraction, p is the parameter
vector including the error σ, T is the total number of fractions for an indi-
vidual patient, and vt is the corresponding modeled GTV. Constrained opti-
mization is conducted for model parameters using a combination of random
search, using pseudo random seeds, and interior point methods. Constraints
are chosen to allow freedom for models to �t individual patients' response to
radiotherapy.

Parameter constraints for each dataset are shown in tables 2 and 3.

Parameter Description Units Constraints

k proliferation rate d�1 [.001-.999]
α radio-sensitivity parameter Gy�1 [.001-.999]
M carrying capacity cc [Vp0q - 100]
c clearance rate for dead cells d�1 [.001-.999]
γ shape exponent - [.001-10]

Table 2: SABR model parameters.

Parameter Description Units Constraints

k proliferation rate d�1 [.001-.999]
α radio-sensitivity parameter Gy�1 [.001-.999]
M carrying capacity cc [Np0q - 1000]
c clearance rate for dead cells d�1 [.001-.999]
γ shape exponent - [.001-10]

Table 3: Standard therapy model parameters.

To limit the in�nite combinations of the radio-sensitivity parameters α
and β, the ratio is �xed to 10 Gy�1, thereby requiring estimation of α only.
Since the number of parameters for some of the considered models exceeds ex-
isting data points, some were kept �xed (i.e. the di�usion length, L � 0.007,
and the vascularization parameter, B � 0.54 [11]). Pearson correlation anal-
ysis is also performed to determine statistically signi�cant dependencies be-
tween estimated parameters. Some of the parameters show high correlation
as shown in table 4 for the models under consideration. Correlation values
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close to 1 indicate that it may not be possible to estimate respective param-
eters separately. Table 4 suggests that such high correlation exists between
parameters α and k, suggesting a positive high dependence for the Gompertz
and logistic models for the standard regimen and 3D model for the SABR
regimen. Another such high dependence exists between the carrying capac-
ity, M , and clearing rate, c, for the same Gompertz and logistic models used
for standard regimen.

α M c

3D α - - -
k - - -

EXP α - - -
k - - -

GOM α - - -
k 0.9957 - -
M - - 0.98

LOG α - - -
k - - -
M - - 0.9848

α M c

3D α - - -
k 0.96 - -

EXP α - - -
k - - -

GOM α - - -
k 0.742 - 0.659
M - - -

LOG α - - -
k - - -
M - - -

Table 4: Statistically signi�cant (p-value<0.05) parameter correlation statis-
tic. Left: standard therapy regimen. Right: SABR regimen.

To assess goodness of �t the % root mean squared error (%RMSE) is
used by �rst �nding the root mean squared error given by

RMSE �
a
SSE{T , (11)

then dividing by the mean of measured patient GTV V̄ , written as

%RMSE � RMSE{pV̄ q � 100%. (12)

Given a group of candidate models, an information-theoretic approach for
selection is used. A model with more parameters tends to �t data better than
a model with fewer parameters. However, there is a tradeo� when increasing
the number of free parameters between decreasing bias and increasing vari-
ance [3]. Therefore, model selection using %RMSE alone will likely result
in over-�tting and high uncertainty.

2.4 Model comparison for the standard treatment and

SABR regimens

To achieve a balance between model �t and model complexity and select a
parsimonious model, Akaike's Information Criterion AIC is used to compare
models for each patient. AIC can be written as
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AIC � T plnp2πq � lnpSSE{T q � 1q � 2p, (13)

where p is the number of free parameters including the variance. AIC is
a heuristic estimator of the more rigorous Kullback-Liebler distance that
measures the discrepancy between distributions [3]. AIC rewards model �t
while penalizing free parameters to rank a set of candidate models. When
dealing with small samples, as is often the case in oncological modeling, AIC
may lead to over-�tting. When possible, a small sample corrected method
AICc [12] is used given by

AICc � AIC �
2ppp� 1q

T � p� 1
. (14)

Though not ideal, AIC is used for the 5 sample SABR data, as calculating
AICc results in comparing in�nite values. The AIC di�erence (∆i) for model
i is calculated using

∆i � AICi �AICmin, (15)

or

∆i � AICci �AICcmin, (16)

when AICc is calculable. As a general rule, candidate models with ∆i   2
have substantial support, 4 < ∆i < 7 have considerably less support, and ∆i

> 10 might be omitted from future consideration [3]. ∆i is also useful for
calculating Akaike Weights (wi) given by

wi �
expp�0.5∆iq°R
r�1 expp�0.5∆rq

, (17)

which gives the relative likelihood for each of the candidate models. The wi
can be interpreted as the probability that model i is the best model, given
the data and set of candidate models (∆r) [3].
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Patient Model p %RMSE AIC AICc ∆i wi

1 3D 4 7.57 3.31 16.65 0 0.50
EXP 4 7.58 3.33 16.66 0.01 0.498
LOG 5 7.55 5.28 35.28 18.63 0.00005
GOM 5 8.69 7.52 37.52 20.87 0.00001

2 3D 4 4.93 -11.55 1.78 0 0.52
EXP 4 5.12 -11.33 2.00 0.22 0.46
GOM 5 2.95 -20.57 9.43 7.65 0.01
LOG 5 2.54 -20.16 9.84 8.06 0.009

3 EXP 4 1.23 7.15 8 0 0.45
3D 4 1.25 7.36 8 .21 0.40
LOG 5 1.27 9.46 8 2.32 0.14
GOM 5 2.37 15.7 8 8.6 0.006

4 EXP 4 2.50 5.12 8 0 0.36
3D 4 2.50 5.12 8 0.001 0.36
LOG 5 2.49 7.08 8 1.96 0.14
GOM 5 2.50 7.12 8 2.01 0.13

5 3D 4 2.09 15.2 8 0 0.38
EXP 4 2.09 15.2 8 0.0006 0.37
LOG 5 2.09 17.25 8 2.0 0.14
GOM 5 2.11 17.3 8 2.06 0.13

6 3D 4 9.83 18.7 8 0 0.36
EXP 4 9.84 18.7 8 0.002 0.36
GOM 5 9.61 20.5 8 1.77 0.15
LOG 5 9.83 20.75 8 2.0 0.13

7 EXP 4 2.86 5.14 8 0 0.37
3D 4 2.86 5.15 8 0.006 0.37
LOG 5 2.86 7.15 8 2.01 0.14
GOM 5 2.95 7.47 8 2.33 0.12

8 EXP 4 0.82 -1.14 8 0 0.65
3D 4 0.75 0.21 8 1.35 0.33
LOG 5 1.45 8.86 8 8.94 0.007
GOM 5 1.30 7.8 8 10.0 0.004

9 GOM 5 0.79 -5.99 8 0 0.999
EXP 4 4.48 9.35 8 15.34 0.0005
LOG 5 4.48 11.4 8 17.34 0.0002
3D 4 6.01 12.3 8 18.28 0.0001

10 GOM 5 0.14 -10.21 8 0 0.67
EXP 4 0.22 -7.52 8 2.68 0.18
LOG 5 0.22 -5.90 8 4.30 0.08
3D 4 0.27 -5.68 8 4.52 0.07

11 EXP 4 0.83 -1.14 8 0 0.36
3D 4 0.83 -1.14 8 .0001 0.36
LOG 5 0.39 0.12 8 1.26 0.19
GOM 5 0.88 1.5 8 2.64 0.01

Table 5: SABR model statistics.



Patient Model p %RMSE AIC AICc ∆i wi

2 LOG 5 2.65 275 277 0 0.999
EXP 4 3.50 290.93 292 15.04 0.0005
3D 4 3.69 294.31 296 18.42 0.0001

GOM 5 3.93 300.27 303 25.21 3.4 � 10�6

3 EXP 4 10.86 232.51 234 0 0.36
3D 4 10.94 232.95 235 0.45 0.28
LOG 5 10.56 233 235 1.26 0.19
GOM 5 10.60 233.08 236 1.48 0.17

4 LOG 5 5.96 266 268 0 0.53
GOM 5 6.05 266.91 269 0.97 0.33
3D 4 6.47 269.34 271 2.61 0.14
EXP 4 7.49 278.99 280 12.26 0.001

9 EXP 4 2.37 107.85 110 0 0.36
3D 4 2.37 107.84 110 0.44 0.28
LOG 5 2.30 108.19 111 1.26 0.19
GOM 5 2.37 110 113 1.48 0.17

Table 6: Standard therapy model statistics.

2.5 Radio-sensitivity parameter α analysis

The two radio-sensitivity parameters α (Gy�1) and β (Gy�2) are con-
stants, one representing the linear and the other the quadratic component
[Appendix C], characteristic to a certain tumor or tissue. In order to limit
the number of varying parameters we consider that α

β � 10, and allow �tting
for α parameter only.

Tables with values for parameter α from all the numerical simulations are
listed in table 7 for the SABR regimen patients, and in table 8 the standard
therapy patients included in this study. Table 7 suggests that the logistic
model provides on average the highest α value, while the 3D, the lowest. Since
values for this parameter are believed to be around 0.3 [15], we conclude that
for this reason only, the logistic model outperforms the rest of the studied
models for the SABR case. The standard therapy results, shown in table
8, suggests that the Logistic and Gompertz models indicate larger values for
parameter α. Therefore, if 0.3 is believed to best approximate this parameter,
then the standard regimen seems to be better represented by the Gompertz
and Logistic models.

The high correlation between α and k shown in table 4 means that a larger
mitosis rate, k, means a higher α value. While high parameter correlation is
an unwanted feature, from a radio-biological perspective this correlation has
an expected signi�cance.
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Patient no. 3D EXP GOM LOG

1 0.084 0.085 0.211 0.083
2 0.066 0.063 0.161 0.145
3 0.113 0.119 0.044 0.120
4 0.054 0.053 0.13 0.064
5 0.005 0.005 0.047 0.005
6 0.015 0.015 0.046 0.043
7 0.020 0.020 0.026 0.020
8 0.007 0.004 0.14 0.50
9 0.004 0.948 0.109 0.923
10 0.007 0.027 0.018 0.026
11 0.004 0.004 0.152 0.011

Average 0.0345 0.1221 0.0985 0.176

Table 7: Parameter α for the SABR regimen.

Patient no. 3D EXP GOM LOG

2 0.020 0.021 0.021 0.015
3 0.051 0.052 0.245 0.130
4 0.014 0.027 0.136 0.058
9 0.999 0.999 0.770 0.999

Average 0.099 0.100 0.124 0.109

Table 8: Parameter α values for the standard regimen.

2.6 Numerical results

Subsections below include simulation results for the growth models con-
sidered in this study, and their appropriate con�dence bands where possible.
SABR patient data includes the dynamics for their respective GTVs for two
types of dose fractionation: One arriving from the simulation of two patient
data with eight data points (patients 1 and 2), and another from the simula-
tion of nine patient data with �ve data points (patients 3 through 11). The
former category of patients was treated with 7.5Gy per fraction and the latter
with 11 Gy per fraction. Plots representing patient GTV data and numeri-
cal simulation results allow for signi�cant di�erences in prediction behavior.
These plots suggest the following. While Figs. 2 and 3 for SABR patients
1 and 2 suggest a fairly constant change in tumor dynamics, patients repre-
sented by a reduced number of data points, exhibit a non-constant amount
of uncertainty. This could be explained because the larger prescribed dose
received by the latter category of patients may induce in�ammation over dif-
ferent time intervals. Wider con�dence bands for the 5-data points versus
8-data points SABR patients might suggest increased in�ammation due to
a higher administered dose. Numerical runs for the standard regimen and
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for the 3D model do not include con�dence bands, because of the method-
ology used for obtaining the results. From the exponential, Gompertz, and
logistic models, the last two seem to provide wider and non-uniform con�-
dence bands. The mean con�dence intervals (not shown here) have all data
points included in the widest band interval, suggesting that our models might
represent a good �t for the type of patient data included in this study.

Our model suggests that the two subpopulations of tumor cells, live and
dead, have di�erent behavior which varies from model to model, as well
as from patient to patient. The two types of behavior can be regarded as
"simple" (i.e. Figs. 6, 7, 8, 9, 10, 20, 22), and "crossed" (i.e. Figs. 11, 18,
19, 21, 23). These two di�erences are re�ected in the clearance coe�cient,
c. Large c values (i.e. ¡ 0.5 indicates a "simple" behavior, while a smaller
c indicates a "crossed" pattern. More research needs to be performed to
establish a bifurcation parameter value for these cases. Among the models
included in this study the exponential model seems to include the highest
clearance rates.
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2.6.1 Exponential Model

Figure 2: SABR Patient 1 EXP: α � 0.085, k �
0.456, c � 0.999.

Figure 3: SABR Patient 2 EXP: α � 0.063, k �
0.328, c � 0.784.

Figure 4: SABR Patient 4 EXP: α � 0.053, k �
0.087, c � 0.030.

Figure 5: SABR Patient 8 EXP: α � 0.004, k �
0.005, c � 0.067.

Figure 6: ST Patient 2 EXP: α � 0.021, k � 0.015,
c � 0.999.

Figure 7: ST Patient 3 EXP: α � 0.052, k � 0.027,
c � 0.713.



2.6.2 3D Model

Figure 8: SABR Patient 1 3D: α � 0.084, k � 0.818,
c � 0.999.

Figure 9: SABR Patient 2 3D: α � 0.066, k � 0.615,
c � 0.766.

Figure 10: ST Patient 3 3D: α � 0.051, k � 0.048,
c � 0.711.

Figure 11: ST Patient 9 3D: α � 0.999, k � 0.001,
c � 0.016.

Figure 12: SABR Patient 5 3D: α � 0.005, k � 0.001,
c � 0.457.

Figure 13: SABR Patient 6 3D: α � 0.015, k � 0.001,
c � 0.500.



2.6.3 Gompertz Model

Figure 14: SABR Patient 1 GOM: α � 0.211, k �
0.999, M � 45.056, c � 0.999.

Figure 15: SABR Patient 2 GOM: α � 0.161, k �
0.267, M � 61.237, c � 0.330.

Figure 16: SABR Patient 9 GOM: α � 0.109, k �
0.999, M � 65.356, c � 0.466.

Figure 17: SABR Patient 10 GOM: α � 0.018,
k � 0.019, M � 27.893, c � 0.082.

Figure 18: ST Patient 4 GOM: α � 0.136, k � 0.066,
M � 282.091, c � 0.033.

Figure 19: ST Patient 9 GOM: α � 0.770, k � 0.304,
M � 83.190, c � 0.024.



2.6.4 Logistic Model

Figure 20: SABR Patient 1 LOG: α � 0.083, k �
0.467, M � 31.19, c � 0.999.

Figure 21: SABR Patient 2 LOG: α � 0.145, k �
0.999, M � 1.87, c � 0.379.

Figure 22: ST Patient 2 LOG: α � 0.015, k � 0.022,
M � 830.79, c � 0.739.

Figure 23: ST Patient 4 LOG: α � 0.058, k � 0.088,
M � 250, c � 0.062.

Figure 24: SABR Patient 10 LOG: α � 0.026,
k � 0.001, M � 26.81, c � 0.059.

Figure 25: SABR Patient 11 LOG: α � 0.01, k �
0.077, M � 12.06, c � 0.068.



3 Conclusions

Results for SABR and standard therapy data sets include model �t and selection
statistics as well as patient α values. Fit and selection statistics were calculated for
EXP, 3D, GOM, and LOG models. Because of the inclusion of γ, it was expected
that the RIC models would match or outperform LOG models when compared
using %RMSE. Generally, RIC models underperformed compared to LOG models
due to rounding errors in the numerical solving methods. Parameter estimation
for the RIC model was also computationally expensive. For these reasons it was
determined that the study would not bene�t from further evaluation of the RIC
models. Von-Bertalan�y growth model is a particular case of the general logistic
function, we excluded this model from our list since outcomes did not signi�cantly
di�er from the logistic model. Model comparison using existing criterion include
AIC and AICc, since BIC require large sample sizes for convergences, which we were
not able to acquire for our study.

Fitting results suggest that model parameters vary from patient to patient and
from model to model. Parameters α and the mitosis rate, k show high correlation
for most of the models under consideration. The clearance rate, c, divides the two
cell population evolution into two distinct patterns: "simple" and "crossed", which
vary between patients and models.

3.1 SABR

Model �t and selection results for SABR patients can be found in table 5. Results
indicate strong support for both EXP and 3D models, which combined, are ranked
as the best �t for 9 of the 11 SABR patients. For EXP and 3D models, only 1
patient has ∆i > 7, indicating that these models merit consideration in most SABR
patients relative to LOG and GOM models. While EXP and 3D models performed
similarly, α values for EXP models were less consistent. 3D models may o�er better
reliability when using clinical data. GOM models were the worst performing models
for SABR data with ∆i ¡ 7 in 4 of the patients. GOM models also have signi�cantly
correlated α, k, and c values (table 4), indicating that the parameter values are not
fully identi�able. Con�dence bands for GOM and LOG models produced very large
intervals for GTV, for many patients the lower bands were below 0. The inclusion
of aM parameter may not be worth including in modeling GTV for SABR patients
as it adds considerable uncertainty, and it is unlikely that small stage 1 tumors are
close enough to a carrying capacity to signi�cantly di�er from exponential growth
within the 2-3 week treatment window. Our analysis regarding the residuals is
shown in [Appendix: A]. Large values resulting from the Kolmogorov-Smirnov test
indicate residual normality for all SABR patients and all models.

3.2 Standard therapy

Model �t and selection results for standard therapy patients can be found in
table 6. For this treatment regimen, results for α indicate strong support for the
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Gompertz model. However, Gompertz models �t poorly when compared to LOG
models. Poor α estimation results could be the result of �xing the α{β ratio to 10Gy,
which may not represent this clinical cohort. LOG ∆i   2 for each patient and wi
values were above 0.5 for 2 of 4 patients. In contrast to SABR, the inclusion of aM
parameter suggests improved modeling results. This may be because initial tumor
volumes of patients receiving standard therapy are larger and more likely to be near
a carrying capacity. This would cause the shape of LOGmodels to signi�cantly di�er
from exponential growth. The data which the LOG model explained the poorest
had a relatively small initial tumor volume. This suggests that the LOG models
may better �t larger tumor dynamics. Our analysis regarding the residuals is shown
in [Appendix: B]. Large values (with the exception of one p-value) resulting from
the Kolmogorov-Smirnov and Cramer-von Mises tests indicate residual normality
for all standard patients under consideration and all models.

4 Future Work

One of the shortcomings of our approach included �xing the α{β ratio to 10.
Therefore, we would like that our future work includes estimations of such fraction.
On the other hand, we would like to focus on the meaning of our parameter val-
ues and consider the possibility of modifying existing models, based on statistical
�ndings related to individual parameters.

We would also like to next consider patient population inference and Bayesian
statistics.
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A SABR Residual Normality Test

Patient no. 3D EXP GOM LOG

1 0.976 0.947 0.594 0.997
2 0.927 0.927 0.462 0.509
3 0.963 0.964 0.61 0.917
4 0.984 0.984 0.923 0.968
5 0.821 0.824 0.816 0.992
6 0.424 0.424 0.346 0.325
7 0.572 0.571 0.668 0.694
8 0.509 0.532 0.387 0.572
9 0.652 0.118 0.53 0.118
10 0.683 0.951 0.466 0.978
11 0.532 0.532 0.517 0.427

Table 9: Kolmogorov-Smirnov p-values.

B Standard Therapy Residual Normality Test Statis-

tic

Patient no. Test3D 3D TestEXP EXP TestGOM GOM TestLOG LOG

2 CVM 0.429 CVM 0.291 CVM 0.924 CVM 0.779
3 CVM 0.721 CVM 0.657 CVM 0.302 CVM 0.714
4 CVM 0.396 CVM 0.838 CVM 0.295 CVM 0.07
9 KS 0.201 KS 0.197 KS 0.07 KS 0.02

Table 10: Cramer-von Mises (CVM) or Kolmogorov-Smirnov (KS) p-values.

C Surviving Fraction

Given a total dose, D, the cell surviving fraction S after radiation can be ex-
pressed mathematically [16]

S � e�αDe�βD
2

, (18)

which includes the linear and quadratic components. Here α and β are tumor
characteristics measured in Gy�1 and Gy�2, respectively.

Since large single doses are damaging to the normal tissue, radiotherapy is ad-
ministered in multiple fractions.

By letting d be the dose per fraction, the fractionated dose can be written

Si � e�αde�βd
2

. (19)
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By letting n be the number of fractions,

S � e�αde�βd
2

...e�αde�βd
2looooooooooooomooooooooooooon

n times

. (20)

Since D � nd, Eq. (20) becomes

S � e�αDp1�
dβ
α q. (21)

Surviving fraction example: A surviving fraction with value S � 1 means that
all cells survived the treatment, and S � 0.3 means that 3 in 10 cells survived
treatment.

While constants α and β can take di�erent values, we use the following estima-
tion α

β � 10.
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