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MARKED CS MOVIES

MATTHEW GRAHAM

Abstract. We present a marked analogue of Carter and Saito’s movie theorem. Our defini-
tion of marking was chosen to coincide with the markings that arise in link Floer homology.
In order to deal with complications arising from certain isotopies, we define three equivalences
for marked surfaces and work over an equivalence class of marked surfaces when proving our
marked CS movie theorem.

1. Introduction

Our initial motivation to study marked surfaces came from link Floer homology (HFL).
Link Floer homology, is a powerful link invariant, defined by Ozsváth and Szabó [17] and
independently Rasmussen [19], that comes in several different flavors. The hat version ĤFL is
the simplest and HFL− contains more geometric information. HFL detects the genus [16] and
fiberedness [14, 15, 3] of knots and categorifies the Alexander polynomial. That is, the graded
Euler characteristic of HFL(L) is the Alexander polynomial of L. A combinatorial method of
calculating link Floer homology was presented in [10, 12]. In [11], a completely combinatorial
construction of HFL was given that was independent of holomorphic techniques and used a
grid diagram representation of a link as input.

The first evidence that markings were needed came when Juhász [5], using sutured Floer
homology (another variation of HFL), showed that ĤFL is functorial with respect to smooth
decorated cobordisms. One might have hoped that these markings would only be required
when working with sutured Floer homology and/or when dealing with the hat version ĤFL.
However, it turned out that markings are important in the combinatorial version as well,
which calculates HFL−. After defining chain maps on HFL−, whose underlying grid diagram
maps could be viewed as births, deaths and saddles, Sarkar [21] showed that the chain maps
induced by his grid diagram maps depended on a particular type of marking. Indeed, he
showed that rotating this marking once around a knot induces a non-trivial automorphism of
the link Floer homology chain complex for most of the 85 prime knots up to nine crossings.

The strongest evidence for the need of markings comes from the following recent result by
Juhász and Thurston [6]. Let a based oriented link be an oriented link L ⊂ S3 along with a
set of base points p = {p1, . . . , pn} exactly one on each link component of L. Let Link∗ be the
category whose objects are based oriented links and whose morphisms are diffeomorphisms of
S3 preserving the based oriented link.
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Theorem 1.1. (Juhász and Thurston 2012) There are functors

ĤFL : Link∗ → F2-Vect,
HFL− : Link∗ → F2[U ]-Mod,

agreeing up to isomorphism with the link invariants defined by Ozváth-Szabó and Rasmussen.
Isotopic diffeomorphisms induce identical HFL maps.

For a marked link L• = (L,p) this means that two different embeddings that are isotopic
to one another induce identical HFL maps. The main reason that link Floer homology has
had such great success is the fact that the isomorphism class of HFL(L) is an invariant of the
link L. Juhász and Thurston’s result strengthened this statement: it shows that HFL(L•) is
a well-defined group, not just an isomorphism class of groups.

On a separate but related note, HFL is related to Khovanov homology of a link L via a
spectral sequence from the Khovanov homology of L, Kh(L), to the link Floer homology of
the branched double cover of L [18]. Khovanov homology is also a powerful link invariant,
it: categorifies the Jones polynomial [7]; puts a lower bound on the slice genus [20]; gives an
upper bound on the Thurston-Benneqin number of a Legendrian link [13]; and (a reduced
version) detects the unknot [9]. However, for us, the most interesting property is the fact that
Khovanov homology is functorial over smooth isotopy classes of (orientable) surfaces in four
space [8]. Specifically this means: (1) a smoothly embedded (orientable) surface in four space
with boundary L1 ∪ L2 induces a map Kh(L1) → Kh(L2); and (2) two smoothly embedded
(orientable) surfaces in four space that are isotopic induce identical maps Kh(L1)→ Kh(L2).

Combining the apparent need of markings in link Floer homology with the well defined
correspondence between Khovanov homology and link Floer homology along with the fact
that Khovanov homology is functorial over smooth isotopy classes of surface in four space, we
pose the following conjecture.

Conjecture 1.2. Link Floer homology is functorial with respect to marked smooth isotopy
classes of surfaces embedded in four space. Specifically this means: (1) a marked surface
smoothly embedded in four space with boundary L•1 ∪L•2 induces a map HFL(L•1)→ HFL(L•2);
and (2) two different marked surfaces embedded in four space that are isotopic induce identical
maps HFL(L•1)→ HFL(L•2).

To get the analogous result in Khovanov homology, Khovanov [8] appealed to a movie move
theorem, which gave him a list of moves that he needed to verify held certain properties.
Specifically, each movie move induces two different chain maps, one for each side of the movie
move. It needs to be verified, for each movie move, that the two induced chain maps are
in fact chain homotopic in order to claim that isotopic embeddings induce the same map on
homology.

One would like to use a similar approach for link Floer homology. However, to date, there
has been little work done on marked isotopy classes of surfaces in 4-space.
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The objective of this paper is to find a reasonable definition of marking of surfaces, and
isotopy of marked surfaces, that is compatible with the markings needed for link Floer ho-
mology. Specifically, we present a marked analog of the following theorem of Carter and Saito
[2].

Theorem 1.3. (Carter and Saito 1993) Two knotted surface movies represent isotopic knot-
tings if and only if they are related by a finite sequence of the 15 movie moves (depicted in
figure 1) or interchanging the levels of distant critical points.

Figure 1. The fifteen CS-movie moves.

It should be noted that there are two different movie theorems. The CS-movie theorem just
stated uses a smooth collection of stills to represent a particular embedding of a surface and
uses the 15 movie moves in figure 1. The CRS-movie theorem [1], requires a second height
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function in each still. It uses a finite collection of stills to represent an embedded surface and
has 31 different movie moves.

We do not discuss a marked version of the CRS-movie move theorem in this paper although
we intend on supplying such a theorem in the future.

The rest of this paper is organized as follows. In the next section, we give a brief review of
movies with boundary. After this we discuss markings and define marked surfaces and three
marked equivalences that are necessary in the proof of the marked analogue of the marked
CS-movie theorem that appears in the final section.

Acknowledgments. I am indebted to Daniel Ruberman for the many conversations that
eventually lead to the definitions of the equivalences found in this paper. I also thank Sucharit
Sarkar for sharing the idea of twist equivalence with me.

2. Movies with Boundary

In this section we give a brief review of movies with boundary in order to fix notation used
in the rest of the paper. Further details can be found in [1, 4].

Let (F, ∂F ) be a surface with boundary. Choose a vector v1 ∈ R4 and for each s ∈ R let
R3
s denote the hyperplane orthogonal to v1 at the point sv1.

Definition 2.1. An embedding of a knotted surface with boundary (K, ∂K, v1, a, b) is an em-
bedding K : F ↪→ R4 along with a choice of unit vector v1 ∈ R4 and a < b ∈ R such that

(1) ∂K ⊂ R3
a ∪ R3

b ;
(2) K ⊂ R3 × [a, b];
(3) (K − ∂K) ⊂ R3 × (a, b).

As in knot theory, we will let K refer either to the embedding K : F ↪→ R4 or the image
K(F ) and ∂K := K(∂F ).

Definition 2.2. Two knotted surfaces with boundary (Ki, ∂Ki, v1, a, b), i = 1, 2 are boundary
ambiently isotopic if there is an isotopy H : R4 × [0, 1]→ R4 such that:

(1) H(x, 0) = x ∀x ∈ R4;
(2) H(K1(c), 1) = K2(c) ∀c ∈ F ;
(3) H(K, s) ⊂ R3 × [a, b] ∀s ∈ [0, 1];
(4) Hs|R3

a∪R3
b

= R3
a ∪ R3

b ∀s ∈ [0, 1].

A knotted surface diagram, K := pv(K), is the image of K, under a projection orthog-
onal to v, to an R3 hyperplane of R4 along with a depiction of crossing information. The
orthogonal projection pv : R4 → R3 can be used to keep track of relative height information
of double points, triple points, etc. The composition pv ◦K(F ) is generic if it is an immer-
sion except for some isolated points, which are cone points of figure 8’s. The j-tuple set is
Sj =

{
y ∈ R : #(pv ◦K)−1(y) = j

}
. For j = 2, 3 this is the double point and triple point set

respectively. A branch point is a point y ∈ R3 such that the intersection of any neighborhood
N(y) with pv ◦ K(F ) contains a cone on a figure 8. The closure of the double point set S2
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contains the branch points and the triple points and can be defined as the image of a compact
1-dimensional manifold (non-generically immersed) in R3 (for details see [1, 4]). From now on
we include the branch points in the double point set even though the preimage of a branch
point is a single point.

Projection onto the vector v1, p1 : R3 → R is a generic Morse function for the knotting
(comprised of fixed embeddingK and generic map p◦K) if: (1) the critical points, with respect
to p1, of S1, S2, S3, are non-degenerate; and (2) each critical point is at a distinct critical level
of p1. We define critical points to include triple points and branch points. Furthermore,
critical points of type I, II and III refer to the critical points of S1, S2 and S3 respectively.
Type I critical points are the standard index 0, 1 and 2 critical points corresponding to births,
saddles and deaths respectively.

A CS-movie of the knotted surface K is a knotted surface diagram K with a fixed generic
Morse function. However, in the case of knotted surfaces with boundary we chose the vector
v1 before the vector v and therefore may need to perturb v1 to get the required Morse function
p1. If a perturbation is needed we need to perturb the boundary components of K to lie in
R3
a with respect to v′1 instead v1 to ensure that we are still working with an embedded surface

with boundary
A complementary coordinate system for an embedding K is an orthonormal coordinate sys-

tem of R4, (v, v1, v2, v3) that satisfies: (1) the projection orthogonal to v, pv : R4 → R3 is
generic with respect to K; (2) the projection of p1 : R4 → R onto the vector v1 is a generic
Morse function for K; and (3) p1 is a generic Morse function for K. A complimentary coordi-
nate system using the vector v1 and a > b ∈ R can always be chosen for any knotted surface
(see [4]). Furthermore, in [4], we defined isotopies of knotted surfaces with boundary that
take a knotted surface with boundary with choices v1 and a > b ∈ R to some other embedding
with v′1 and a′ > b′ ∈ R . Therefore, for simplicity, we will always assume when considering
multiple marked smooth movies that a single complimentary coordinate system is chosen with
some fixed v1 and a > b ∈ R.

3. Equivalence of Markings

In this section we give a definition of a marking of an embedded surface in R4 and then
discuss the complications that arise when isotopies of the surface are considered. We then
circumvent these complications by defining three equivalence relations for markings and work
over an equivalence class of marked surfaces that will be used in the following section to prove
a marked movie move theorem.

Definition 3.1. A marking of an embedded surface K ⊂ R3 × [a, b] is an embedding of a
connected graph T with only univalent and trivalent vertices T �

� M // K ⊂ R4 such that:

(1) There exists a single marked point in each link component of K ∩ R3
s for each s ∈

[a, b]− { type I critical values }.
(2) (a) If x is a single valence vertex then p (M(x)) is either an index 0 or 2 type I critical

point or a marking of a link component in p(∂K);
(b) If x is a trivalent vertex then p (M(x)) is an index 1 type I critical point;
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A marked surface is an embedded surface with a marking. Again, we will let M refer either
to the embedding or the image of the embedding M(T ).

Definition 3.2. A flow orientation of a marking is the orientation that is endowed by flowing
in the positive time direction along the marking.

Now that we have marked surfaces we need to define what a marked isotopy of these
surfaces is. Suppose that we let a marked isotopy be a level preserving isotopy g of K. Then
g automatically is an isotopy through markings since each link component in each level set
has a single marking and the level sets are preserved. However, level preserving isotopies are
quite a restrictive class, especially in light of the fact that the non-marked marked CS-movie
theorem is a theorem about arbitrary isotopies.

Alternatively, we could require a marked isotopy to be an isotopy g of (K,M) such that
(gs(K), gs(M)) is a marked surface for all s (i.e. it is an isotopy through markings). At first
glance, this seems like a good definition since it allows the critical values to change. However,
there are some type I critical values (the Morse critical points) that must maintain their
ordering. For example, in many cases exchanging the ordering of two type I index 1 critical
values cannot be done through markings. A specific example of this is in figure 2.

Figure 2. An isotopy exchanging a merge and split saddle point. The top left
two diagrams (and the bottom right two diagrams) depict an isotopy acting on
a marked surface. The middle diagrams depict when the two critical points lie
in the same level set. The sets of marked points in the top right three (and the
bottom left three) diagrams are not markings since there are more than one
marking per link component in some level sets.

Consider the top sequence of diagrams in figure 2 that represent an isotopy g acting on a
marked surface (K,M) and assume that the middle diagram occurs at g 1

2
and g0, g1 are the

left most and right most diagrams respectively. Further assume that xi and xj are the two
type I index 1 critical points depicted, with critical values ci < cj in g0 (according to our choice
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of vector v1). Then gs(K,M) is a marked surface for s ∈ [0, 1
2). However, g 1

2
(K,M) is not a

marked surface since g 1
2
(M) has an arc of the marking ϕ residing in some link component in

the level set ci = cj . The image of the marking in gs(M) for s ∈ (1
2 , 1] is not a marking since

in each still between the two critical values cj < ci there is a link component with exactly
three markings.

Define gs = g1−s (i.e. g is the isotopy that runs g backwards), which means g0 is the right
most diagram of the second sequence. Interestingly, there is another marking M ′ of g1(K)
pictured in the second sequence that has the exact same properties as M . That is to say
g(g1(K),M ′) has the exact same properties as g(K,M). Namely,

(1) gs(g1(K),M ′) is a marking for s ∈ [0, 1
2);

(2) there is an arc ϕ′ in g 1
2
(M ′) residing in some link component in the level set ci = cj (as

oriented arcs g 1
2
(ϕ′) = −g 1

2
(ϕ), that is they are the same arc with opposite orientation

(assuming that g0(M) and g(M ′) are given flow orientations–left diagram of figure 5);
(3) the image of the marking gs(M ′) is not a marking since in each still between the two

critical values cj < ci there is a link component with exactly three markings.

It is clear that this definition of marking does not always allow for isotopy through markings
when exchanging critical point levels. Exchanging critical point levels is essential to the smooth
unmarked movie move theorem. This means that we need to find a notion of marking and
marked isotopy that can always exchange critical points in a well-defined manner. To do this
we will modify the class of markings by defining equivalence relations. The first equivalence
relation defined in the next subsection equates g0(K,M) with g1(g1(K),M ′).

3.1. Marking Equivalences. The point of this subsection is to modify the notion of equiv-
alence for markings so that there is a sensible way to exchange the levels of critical points
while staying within the same equivalence class of marking. We will define three different
equivalence relations: a (balancing) twist equivalence relation; a canceling equivalence; and
a zero arc equivalence. The arcs ϕ,ϕ′ encountered in the example depicted in figure 2 that
connect the two type I index one critical points are special arcs that we will name zero arcs.
Definition 3.3. Let xi and xj be two successive type I index 1 critical points, with critical
values ci < cj, and let g : R4 × [0, 1] → R4 be an isotopy of a marked knotted surface (K,M)
such that g1(xi) and g1(xj) are contained in the same level set and gs(M) is a marking for
s ∈ [0, 1). A zero arc or zero curve, of the marking M , zij ⊂ g0(M) connects the critical
point xi to xj and is an arc such that g1(zij) is an embedded arc, of the link with two singular
crossings, that intersects g1(xi) and g1(xj) at its endpoints and nowhere else.

There are only two possible images of zero arcs and they are depicted in figure 3.
Suppose that initially ci < cj , then the zero curve zij would be oriented with initial point xi

and final point xj and likewise g1(zij) has initial point g1(xi) and endpoint g1(xj). If cj < ci
initially the orientations are reversed and we would denote this by the zero arc zji. There
are four different cases for passing type I index 1 critical points past each other, depending
on whether xi, xj are merge or split saddle points. We have discussed an example involving a
merge and split type I index 1 critical points depicted in figure 2.
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Figure 3. The image of two zero arcs, represented by dotted lines, connect
two singular points ci and cj . Li are different links.

3.1.1. Zero Arc Equivalence. We would like to say that the markings in the top two diagrams
of figure 2 are equivalent to the markings in the bottom right two diagrams. Then if we are
dealing with an isotopy that exchanges index 1 critical points we can stay within the same
equivalence class of marking except at the point in the isotopy in which both critical points
lie in the same level set. The following constructions make this equivalence precise. Follow
figures 3 and 4 when making sense of the following definition.

Definition 3.4. Let g : R4 × [0, 1] → R4 be an isotopy that exchanges two consecutive type
I index 1 critical points xi, xj, with critical values ci, cj, of a boundary knotted surface K :=
K[a,b] and let gs := g1−s be the isotopy that runs g backwards. Let M be a marking of g0(K)
and M ′ be a marking of g1(K). Then the markings M and M ′ are zero equivalent through g
if they satisfy the following (suppose xi, xj only share a level set at g 1

2
and ε > 0 is small):

(1) g|s(M) and g|s(M ′) are markings for s ∈ [0, 1
2);

(2) M has a zero curve z := zij ⊂ g0(M) connecting xi to xj;
(3) M ′ has a zero curve z′ := zji ⊂ g0(M ′) = g1(M ′) connecting xj to xi;
(4) g 1

2
(z) = −g 1

2
(z′) (i.e. they are the same arc with opposite flow orientations);

(5) there are four points in the intersection M ∩ g1(M ′) residing in R3
ci−ε ∪ R3

cj+ε labeled
by dk for k = 1, . . . , 4 with at least one intersection point in each level set ci − ε and
cj + ε;

(6) gs
(
M[a,ci−ε]

)
is a marking for gs(K[a,ci−ε]) and gs

(
M[cj+ε,b]

)
is a marking for gs

(
K[cj+ε,b]

)
for each s ∈ [0, 1] and g1

(
M[a,ci−ε]

)
= M ′[a,ci−ε] and g1

(
M[cj+ε,b]

)
= M ′[cj+ε,b].

(7) each dk is an endpoint of two arcs ek ⊂ M[ci−ε,cj+ε] and e′k ⊂ h1
(
M ′[ci−ε,cj+ε]

)
each

containing only one of xi, xj, which is the other endpoint; for exactly two values of
k = 1, . . . , 4, ek is isotopic to e′k relative to the endpoints (in figure 4 these arcs are
solid and have endpoints in d1 and d3);

(8) for the other two values, say l,m, of k not used in the last condition there are two arcs
with endpoints dl and dm which have both xi and xj in the interior; these two arcs are
isotopic (these are the dotted arcs with endpoints in d2 and d4 in figure 4).

Condition 5 allows us to separate the marked surface into different regions: an interesting
middle region that is important for the equivalence relation; and exterior regions. Condition 6
states that the markings outside the interesting region are isotopic to one another. Condition
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Figure 4. Diagram of curves used in the definition of zero arc equivalence.
Dotted arcs do not represent arcs going around the back (even though in general
they could do so). They are curves on the front of the diagram.

Figure 5. Two different examples of the moment in the isotopy h that has
both critical values in the same level set. The light (red) marking defined in
lims→ 1

2
h|[0,s) is equivalent to the dark (blue) marking defined in lims→ 1

2
h|(s,1]

through the isotopy h in each case. Again the dotted lines do not represent
arcs going around the back.
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7 and 8 guarantee that the curves we would like to make equivalent inside the level sets
[ci − ε, cj + ε] are isotopic.

The needed zero arcs for an isotopy g of a marked surface (K,M) that exchanges index 1
points may not exist. This means there is not a zero equivalent marking toM through g. This
simply means that the arc connecting the two critical points does not have the appropriate
number of twists. The next equivalence relation will allow us to move twists past critical
points in order to create the needed zero arc. See figure 6 for the motivating picture of the
twist equivalence.

Figure 6. Examples of twist equivalent markings the marked points m1,m2
and xi are defined in 3.6. The isotopy is given by flow in the positive time
direction.

3.1.2. Twist Equivalence. Let (K[a,b],M) be a marked surface with indexed critical levels
c0 < c1 < · · · < cn. Suppose that xi is a type I index 1 critical point with critical value ci.
Let m be a point of the marking in the ai level where ci−1 < ai < ci. Let wi ⊂M ∩K[ai,ci] be
the marked subarc of M , with endpoints m and xi,

Definition 3.5. Let g : R4×[0, 1)→ R4 be an isotopy of the marked surface (K[a,b],M), defined
above, such that: gs(K) = K for each s ∈ [0, 1); g0(m) = m 6= xi, lims→1 gs(m) = xi and g
is the identity when restricted to the level sets [a, b]− [ai, ci). Then the arc wi := M ∩K[ai,ci]
is a (single) twist arc of xi with respect to g if gs(M) is a marking for each s ∈ [0, 1) and
lims→1 gs(wi) is an immersed oriented arc, in the critical level ci, with exactly one double point
xi.

Definition 3.6. Let K[a,b] be a knotted surface with a type I index 1 critical point xi, with
critical value ci. Let M1 and M2 be two markings each containing a single twist arc w1 ⊂
M1 ∩ K[a1,ci] with respect to g : R4 × [0, 1) → R4 and w2 ⊂ M2 ∩ K[ci,a2] with respect to
h : R4×[0, 1)→ R4. M1 andM2 are twist equivalent through g and h if there exists a1, a2 ∈ R
with a < a1 < ci < a2 < b such that:

(1) M1
[a,a1] is isotopic to M2

[a,a1] and M
1
[a2,b] is isotopic to M2

[a2,b];
(2) lims→1 gs(m1) ∩ R2

ci
= limt→1 ht(m2) ∩ R2

ci
= xi

(where m1 = w1 ∩ R2
a1 and m2 = w2 ∩ R2

a2)
(3) lims→1 gs(w1) = limt→1 ht(w2) ⊂ R2

ci
as oriented arcs;
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Figure 7. Two sequences of twist equivalences moving twists past a saddle
point. The top sequence moves the twist right to left assuming an isotopy that
flows in the negative time direction. The bottom sequence moves the twist left
to right assuming an isotopy that flows linearly in the positive time direction
(note that this cannot be done in one step since the marking enters and exits
the critical point from different directions, which makes the third condition of
twist equivalence fail).

3.1.3. Canceling Equivalence. An isotopy that cancels either a zero or two index critical point
with an index 1 critical point also creates problems for markings. Consider an isotopy g : R4×
[0, 1]→ R4 of a marked surface (K,M) that cancels an index zero and one critical point and
a marking M ′ for g1(K). There is no hope that M and M ′ will be isotopic since M has one
more univalent and trivalent vertex than M ′. The following equivalence relation deals with
these cases.

Definition 3.7. Two marked surfaces (Ki,Mi), i = 1, 2 are canceling equivalent through an
isotopy g : R4 × [0, 1]→ R4 if the following are satisfied:

(1) at s = 1, g cancels an index zero (or two) critical point xi with an index one critical
point xj with initial critical levels ci < cj (correspondingly ci > cj);

(2) g0(K1) = K1 and g1(K1) = K2;
(3) gs(M1) is a marking for gs(K1) for s ∈ [0, 1);
(4) there exists an arc bij in g1(M1) lying in the critical level g1(ci) = g1(cj) with endpoints

g1(xi) and g1(xj);
(5) the closure of (g1(M1)− bij) is isotopic to M2.

Definition 3.8. Let (K,M) be the equivalence class of markings for K where M is the equiv-
alence class of markings generated by isotopy through markings and twist, canceling and zero
arc equivalences.
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Figure 8. An example of a canceling equivalence. The initial marked surface
(K1,M1) is canceling equivalent to the final marked surface (K2,M2) through
an isotopy that cancels the index 0 and 1 type I critical points.

Definition 3.9. Two marked knotted surfaces (Ki,Mi), i = 1, 2 are marked isotopic if there
exists a smooth isotopy g : R4 × [0, 1]→ R4 such that:

(1) g0(K1) = K1 and g1(K1) = K2
(2) (g1(K1), g1(M1)) is in the same equivalence class as (K2,M2)
(3) if ∂K 6= ∅ and ∂K ⊂ R3

a ∪ R3
b then g(∂K, s) = ∂K for each s ∈ [0, 1].

4. Marked Smooth Movie Theorem

Now that we have defined the equivalence classes of markings for knotted surfaces, we are
in a position to generalize Carter and Saito’s movie move theorem to the category of marked
smooth surfaces K with markings in M . The projection of a marked knotted surface (K,M)
by generic function p : R4 → R3 onto the hyperplane R3, along with crossing information, is
a marked knotted surface diagram, denoted by (K,M) := (p(K), p(M)). A marked knotted
surface movie or simply marked CS-movie is a marked knotted surface diagram with a choice
of Morse function p1 : R3 → R that separates the type I, II, III critical points except the
endpoints of the double point set in ∂K.

Lemma 4.1. Suppose that K[a1,b1] ⊂ (K,M) contains no type I singularities and suppose that
gs is an isotopy through markings satisfying gt(K) = K for each t ∈ [0, 1] defined by flowing
the marking uniformly in the time direction. Then there exists a level preserving isotopy g
such that gt(K) = K for all t ∈ [0, 1] and gt(M[a1,b1]) = gt(M[a1,b1]) for each t ∈ [0, 1].

Proof. Let K[a1,b1] and gt have the properties stated above. Define an isotopy, P ct : Kc → Kc,
to be the process of flowing all points in the level set Kc in a direction orthogonal to v, by
P ct (Mc) := gt(M[a1,b1])∩Kc. The fact thatM is a marking, there are no type I critical points
in K[a1,b1] and that gt is an isotopy through markings guarantee that gt(M[a1,b1])∩Kc always
consists of a single point, which defines the orthogonal flow for the rest of the points in Kc.

Next define gt : K[a1,b1] → K[a1,b1] by gt := ∪c∈[a1,b1]P
c
t (Mc). By construction gt(M[a1,b1]) =

gt(M[a1,b1]) for each t ∈ [0, 1]. The fact that gt is an isotopy of (K,M) follows from the uniform
flow of each level set and the fact that gt is an isotopy of the marking.

�
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Lemma 4.2. Whenever an unmarked CS-movie move, that does not contain a type I critical
point (M = Mi for i = 1, . . . , 7, 9, 10, 11), is performed on a marked CS-movie of a marked
knotted surface diagram (K,M) it can be arranged, using level preserving isotopies and ex-
changing critical points, so that there are no marked points in the portions of the stills affected
by M.

Proof. Let (K,M) andM be given as in the lemma with generic projection and Morse function
p1. What one would like to do is to perform a level preserving isotopy that isotopes the
marking away from the unmarked CS-movie move. However, this cannot always be done
directly. Sometimes we will need to exchange critical levels of certain critical points. See the
diagram on the left of figure 9 and note that the type I critical points with values in between
the type II branch points obstruct an isotopy through markings. The following procedure
works in general.

Figure 9. Example of unmarked CS-movie move 1 operating on a marked surface.

Let c1 < · · · < cn be the n type I,II and III critical points of p1 ◦ p(K). Let D[a1,b1] be a
collection of sub-diagrams operated on byM. IfM∩D[a1,b1] = ∅ then there is nothing to prove.
Otherwise, exchange critical points until there are no type I critical points in K[a1,b1]. This
can always be done for this list of movie moves since they do not involve type I critical points.
If there are no type I critical points in K[a,b] then there exists an isotopy h : R4 × [0, 1]→ R4

such that hs(M) is a marking for each s ∈ [0, 1] and p(h1(M)) ∩ D[a1,b1] = ∅.
To define hs let φ : R4 → R4 be a bump function with support K[a1−ε,b1+ε] (for small ε > 0)

and define f1 : R4 × [0, 1] → R4 to be an isotopy that flows uniformly in the time direction
satisfying f1

u(K) = K for each u ∈ [0, 1] (f1
u takes diagram 2 to diagram 3 in figure 9).

Since there are no type I critical values in this region f1
u(M) is a marking for u ∈ [0, 1] and

by lemma 4.1 we know that there is a level preserving isotopy that effects the marking in
the same way as f1

u(M). For the rest of the proof assume that we had chosen f1
u(M) to

be level preserving from the beginning. Then p
(
f1

1 ◦ φ(M)
)
∩ D[a1,b1] is either empty or a

single connected line segment running in the time direction. If it is empty then h := f1 ◦ φ
satisfies the condition. If it is not empty, then define h := f2 ◦ f1 ◦ φ, where the isotopy
f2 : R4 × [0, 1]→ R4 satisfies f2

s (K) = K for each v ∈ [0, 1] and flows the points of each level
set Kt in the positive direction (as given by some local orientation with support K[a1−ε,b1+ε]).
Since f2 is level preserving the smooth isotopy f2

v (f1
u(M)) is automatically a marking for each

u, v ∈ [0, 1]. Then p
(
f2

1 ◦ f1
1 ◦ φ(M)

)
∩ B is empty. Thus in all cases we are able to isotope

the markings away from movie moves 1-7, 9, 10, and 11. �

In light of this lemma we make the following definition.
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Definition 4.3. The marked CS-movie moves not involving type I critical points are the same
as the unmarked CS-movie moves. That is, M•i := Mi for i = 1, . . . , 7, 9, 10, 11.

This leaves only the movie moves that involve type I critical points. However, the definition
of marking restricts the possibilities since each type I critical point is a vertex of the marking.
Definition 4.4. Marked CS-movie moves 8,12-15 are depicted in figure 10.

Figure 10. marked CS-movie moves 8, 12-15. There are various versions of
13 and 15. Choose either both types of marked circles or both types of marked
squares, then choose one of the other type. This encodes both fission and merge
saddle moves.

Theorem 4.5. Two marked knotted surface movies (Ki,Mi) (for Ki := Ki[a,b] and i = 1, 2)
represent marked isotopic knottings (Ki,M

i) if and only if they are related by a finite sequence
of marked CS-movie moves M•j , j = 1, . . . , 15, interchanging the levels of distant critical points,
twist and zero arc equivalences.

Proof. Suppose that (Ki,Mi) represent marked isotopic knottings (Ki,M
i) and choose a com-

plementary coordinate system. As unmarked surfaces, Ki represent isotopic knottings Ki,
which means that K1 and K2 are related by a finite sequence of unmarked CS-movie moves
Ml1Ml2 · · ·Mln and interchanging levels of distant critical points, where lk ∈ {1, . . . , 15} for
each k. Perform a level preserving isotopy of the movies so that the markings forM•8,M•12,M

•
13,

M•14,M
•
15 appear as they do in figure 10. Also perform any needed level preserving iso-

topies and exchange of critical points (as in lemma 4.2) to make all movie moves M•i for
i = 1, . . . , 7, 9, . . . , 11 not have any markings on the effected portions of the stills. Then there
exists the same sequence of marked CS-movie moves M•l1M

•
l2
· · ·M•ln and the exact same in-

terchanging levels of distant critical points that relate (K1,M1) to (K2,M2). Recall we may
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need to choose an equivalent representative of the marking when interchanging critical points.
Additionally, for each canceling equivalence there is a corresponding marked CS-movie move
M•8.

For the converse, suppose that (K1,M1) and (K2,M2) are related by a finite sequence of
marked CS-movie moves M•l1M

•
l2
· · ·M•ln , twist and zero arc equivalences and interchanging

levels of distant critical points, where lk ∈ {1, . . . , 15} for each k. Viewing these as unmarked
CS-movie moves immediately gives that K1 and K2 represent (unmarked) isotopic knottings
K1 and K2.

It only remains to show that M1 ≡M2. However, it is given thatM1 andM2 are related
by twist and zero arc equivalences and M•8 moves which means thatM1 ≡M2 and therefore
M

1 ≡M2.
�
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